International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(JIEST) 2026, Vol. No. 12, Issue 1, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

Policy-as-Data for Self-Healing SaaS: A Kubernetes-Native
Approach

* Amar Gurajapu, **Anurag Agarwal
*Principal Member of Technical Staff, **Senior Software Engineer,
Network Systems, AT&T
Middletown, New Jersey, United States

DOI:10.37648/ijiest.v12i01.004

!Received: 28 December 2025; Accepted: 18 January 2026; Resubmitted after correction: 25" January 2026;
Published: 02 February 2026

ABSTRACT

We propose a scalable, Kubernetes-native approach to enforce security, configuration, and regulatory policies in
multi-tenant SaaS. Each policy is stored as a versioned Custom Resource (Policy CR) in a Git repo (“Policy-as-Data”),
synchronized via a GitOps agent, validated on create/update through a mutating admission webhook, and reconciled
continuously by a self-healing controller. This closed-loop design minimizes manual intervention, provides drift
detection, and enables automated remediation across hundreds of namespaces with minimal overhead.

Keywords: Policy-as-Data; GitOps, Kubernetes,; Self-Healing; Admission Webhook,; Custom Resource Definition
(CRD); JSONPatch, SaaS

1. Introduction

Today’s SaaS offerings often span dozens or hundreds of Kubernetes namespaces, each with potentially hundreds
of Pods. Ensuring every workload adheres to evolving security or compliance rules—such as “no root containers” or
“mandatory resource limits”—is a significant operational burden:

e Manual policy checks are error-prone and slow.
e Static admission policies lack visibility into live drift.
e Custom operators frequently hard-code rules, making updates cumbersome.

We address these challenges by treating policies as data:

e Policy-as-Data - Policies are CRs in a Git repo, making them discoverable, versioned, and auditable.

e GitOps-Driven Sync - A GitOps agent (e.g. Argo CD) applies changes automatically[4]

e Admission-Time Enforcement - A mutating webhook inspects and rejects or patches new/updated Pods.

e Self-Healing Reconciliation - A controller loops periodically to detect and repair any drift in existing objects.

' How to cite the article: Gurajapu A., Agarwal A.; January 2026; Policy-as-Data for Self-Healing SaaS: A Kubernetes-Native Approach;
International Journal of Inventions in Engineering and Science Technology,; Vol 12 Issue 1, 28-33, DOL: http://doi.org/10.37648/ijiest.vi2i01.004

28

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE TECHNOLOGY

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(JIEST) 2026, Vol. No. 12, Issue 1, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

This end-to-end loop delivers continuous compliance, integrates into existing CI/CD pipelines, and scales to large
cluster footprints.

2. Materials and Methods

As Kubernetes adoption grows, enforcing cluster-wide policies consistently and at scale becomes critical. Though
this is a known gap, it is often observed that DevSecOps teams rely on Manual audits, which might sometimes have
serious consequences in terms of financial impact and credibility. Below we outline key pain points, survey existing
approaches, and motivate our Policy-as-Data design.

A. Key Challenges

e Dirift over Time - Resources may be created before a new policy is introduced. Manual fixes lag behind real-
time changes, leaving windows of non-compliance.

e Scale & Multitenancy - Hundreds of namespaces and thousands of Pods demand low-latency checks.
Centralized enforcement must avoid becoming a performance bottleneck.

e Evolving Rule Sets - Security and regulatory requirements change frequently. Hard-coded policy logic in
controllers/operators requires rebuilds for each update.

e Audit & Traceability - Teams need a version history of policy changes. Rollback and audit trails are essential
for compliance reporting.

B. Why Policy-as-a-data approach? [2]

e Decouple Rule Management - Policies live as simple YAML CRs in Git with no need for any recompilation
when rules change.

e GitOps Integration - Leverage existing GitOps pipelines for automatic rollout, versioning, and audit.

e Continuous Self-Healing - Beyond admission-time checks, a controller reconciles drift, ensuring retroactive
compliance.

e Lightweight & Kubernetes-Native - Builds on standard controller-runtime patterns and JSONPatch[5],
avoiding heavyweight external engines.time until 50 % of new requests succeed post-failover

C. Example Use Cases

Few use cases which would justify the need emphasized in this paper.

e Security Context Defaults - Enforce ‘'runAsNonRoot=true' on all Pods, even ones created before the policy
existed.

e Mandatory Labels / Annotations - Auto-inject team or environment labels for chargeback and monitoring.

e Network Policy Enforcement - Block Pods that lack specific network segmentation rules.

e Resource Quotas - Ensure resource limits/requests meet organizational minimums.

D. Logical Components and Data Flow

Our design divides the loop into five collaborating components. Each plays a clear role, and together they form a
horizontally scalable, self-healing enforcement system.

29

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE TECHNOLOGY

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(JIEST) 2026, Vol. No. 12, Issue 1, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

Commiit policy CR to Git

|

GitOps Agent

l

Kubernetes API Server

Reconciliation Loop J

Self-Healing Operator Policy Controller

— //
/ N \\ /
’ i Admission Process

Kubernetes API Server ConfigMap (rules) Pod CREATE/UPDATE
ﬁl!“*-ﬁ
PATCH non-compliant Pods Admission Webhook

|

‘ Allow or Deny Pod

Figure 1. Data flow between modules

e Policy Git Repository - Stores one YAML file per rule (Policy CR). Branch protection ensures review before
roll-out.

e GitOps Agent - Monitors the repo and applies CRs into the cluster via the Kubernetes API.

e Policy Controller - Watches for Policy CR events and aggregates active rules into a namespace ConfigMap for
fast lookup.

e Admission Webhook - Intercepts Pod "CREATE" and "UPDATE" calls, reads the in-cluster ConfigMap, and
allows, denies, or mutates the request.

e Self-Healing Operator - On a configurable interval (e.g. 30 sec), lists all workloads, applies JSONPatch from
each policy, and issues patches to remediate any drift.

E. Security and Resilience

While it is important to handle the functional aspect, there is need for non-functional compliance with respect to
securing data protection, high availability and disaster management.

e TLS and RBAC - Webhook server run on HTTPS with mounted certificates. RBAC roles restrict who can
modify Policy CRs and ConfigMaps.

e High Availability - Deploy controller, operator with multiple replicas and leader election.

e Failure Modes - If the webhook or operator fails, policies revert to earlier commit (Git rollback) and health
probes restart pods automatically.

F. Performance and Scalability

It is possible to choose any standard DNS mechanism used within the organization. These APIs are designed for
automation, enabling seamless DevOps workflows and granular control over traffic distribution. For instance, you
can rely on either Amazon Route 53 or IBM NS1 Connect (formerly NS1) which provide RESTful APIs that allow
you to programmatically manage DNS records and adjust global traffic weights. compliance with respect to securing
data protection, high

30

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE TECHNOLOGY

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(JIEST) 2026, Vol. No. 12, Issue 1, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

availability and disaster management.

e ConfigMap Caching - Controllers read the small, aggregated rule set from a single ConfigMap, minimizing
API calls.

e Indexing - Use field-indexed cache on Pods to avoid full cluster scans (for large clusters).

e Concurrency - Reconciliation workers process namespaces in parallel, bounded by rate limits.

G. Evaluation

We have basically

e Testbed - 3-node Kubernetes cluster with 500 Namespaces, each hosting 10 Pods.

e Metrics & KPIs - Block Rate (% of create/update requests denied by webhook), Patch Latency (Time between
rule change / drift injection and controller patch), Controller Overhead (CPU & memory footprint at 1000
Pods).

e Procedure - Inject around 100 non-compliant Pods across namespaces and measure how many are blocked vs.
patched. Finally, we record patch latency and resource usage using Prometheus.

e Scalability test - Programmatically created 500 namespaces, each with 10 Pods running
without runAsNonRoot. After deployment of self-healing operator (one replica) and webhook, removed
runAsNonRoot across all namespaces. MTTC refers to the mean time to compliance, which refers to average
of all latencies across all 500 patch events.

3. Results and Discussion

We have noticed that the admission webhook provides fast, front-line enforcement, blocking 1/3 of non-compliant
requests instantly. The self-healing operator repairs drift within 10 s in 95% of cases, supporting retroactive
compliance. Resource overhead remains low (<0.8 cores, <200 MB) even when scaled to 500 namespaces. Finally,
the Observability metrics allow fine-grained tuning of reconciliation intervals and policy complexity.

TableI. Results - Metric and Outcome

Metric Group Metric Value
Total create/update attempts 1,000
Denied by admission webhook 320
Block Rate Block rate 32%
Drift injections performed 500
Mean Time to Compliance (MTTC) 7.2s
95th-percentile latency 12.5s
Patch Latency Maximum observed latency 18.0s
Self-Healing Operator (CPU/Mem) 0.15 cores/120 MB
Controller & Webhook Overhead Admission Webhook (CPU/Mem) 0.05 cores (@100 req/s)/60MB
Average MTTC 15s
Scalability Test (500 Controller CPU usage 0.6 cores
namespaces) Unexpected rejections 0 (as expected)
policy_reconcile_duration_seconds Time taken per reconciliation loop
adrn_ission_requests_total{allowed, Counts of webhook decisions
denied}
patch_requests_total{success,failur Counts of self-healing patch
Observability & Logging e} operations

A. Optimization Opportunities

e Scalability - Controller list operations can be optimized with field-indexed caches.
e Rule Conflicts - Define rule priority or merging semantics when multiple patches target the same field.
e Extensibility - Extend to other resource kinds (ConfigMap, Deployment) by adding support in webhook &

reconciler.
31

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE TECHNOLOGY

http://www.ijiest.in/

International Journal of Inventions in Engineering & Science Technology http://www.ijiest.in

(JIEST) 2026, Vol. No. 12, Issue 1, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

e Security - Secure the GitOps agent and webhook server with TLS and RBAC.
e Observability - Instrument webhook and controller with metrics (Prometheus) and structured logs.
e Image Scans — The same mechanism can be extended to cover image scanning.

4. Conclusion

We have presented a fully automated loop for policy enforcements and self-healing capability. Future directions
may consider

e Policy DSL - A higher-level language to author complex rules (e.g., regular expressions on labels).

e Event-Driven Healing - Leverage Kubernetes Events & informers for push-based reconciliation.

e Cross-Cluster Federation - Share policies across clusters via a centralized policy engine.

e Al-Driven Suggestions - Use ML to propose new policies based on observed drift and security findings.

5. Acknowledgment

Thanks to Tony Hansen, Swapna Anumolu for reviewing the paper and providing valuable input.

References

Argo CD - Declarative GitOps CD for Kubernetes. (n.d.). Argo CD Documentation. Retrieved January 5, 2026,
from https://argo-cd.readthedocs.io/en/stable/

Bryan, P. C., & Nottingham, M. (2025). RFC 6902: JavaScript Object Notation (JSON) Patch.
IETF. https://datatracker.ietf.org/doc/html/rfc6902

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg, Omega, and
Kubernetes. Communications of the ACM, 59(5), 50-57. https://doi.org/10.1145/2890784

Gazitt, O. (2022). Policy-as-Code or Policy-as-Data? Why choose? Aserto Blog. Retrieved January 5, 2026,
from https://www.aserto.com/blog/policy-as-code-or-policy-as-data-why-choose

Gurajapu, A. (2024). Towards a Futuristic Security Roadmap: Advanced Strategies. Journal of Computer Science
and Technology Studies. https://doi.org/10.13140/rg.2.2.16748.01928

Gurajapu, A. (2026a). Leveraging Artificial Intelligence to Bridge Execution Gaps in SAFe®-Scaled Agile Based

Programs. World Journal of Advanced Engineering Technology and
Sciences. https://doi.org/10.30574/wjaets.2026.18.1.1585

Gurajapu, A. (2026b). Orchestrating Adaptive Resilience and Continuity Restoration in Cloud-Native
Environments. International ~ Journal of Inventions in Engineering & Science Technology,
12(01). https://doi.org/10.37648/ijiest.v12i01.001

Gurajapu, A. (2026c). Shift-Left Security Validation of Containers via Kubernetes Admission
Webhook. Frontiers in Computer Science and Artificial Intelligence. https://doi.org/10.32996/jcsts.2026.5.1.6
Gurajapu, A. (2026d). Swap Kubernetes Secrets Without Application Disruption - Comparative Study and eBPF-
Powered Kernel Interception Framework. World Journal of Advanced Engineering Technology and
Sciences. https://doi.org/10.30574/wjaets.2026.18.1.0005

Kubernetes-sigs. (2025, November 16). GitHub - kubernetes-sigs/kubebuilder: Kubebuilder - SDK for building
Kubernetes APIs using CRDs. GitHub. Retrieved January 5, 2026, from https://github.com/kubernetes-
sigs/kubebuilder

32

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE TECHNOLOGY

http://www.ijiest.in/
https://argo-cd.readthedocs.io/en/stable/
https://datatracker.ietf.org/doc/html/rfc6902
https://doi.org/10.1145/2890784
https://www.aserto.com/blog/policy-as-code-or-policy-as-data-why-choose
https://doi.org/10.13140/rg.2.2.16748.01928
https://doi.org/10.30574/wjaets.2026.18.1.1585
https://doi.org/10.37648/ijiest.v12i01.001
https://doi.org/10.32996/jcsts.2026.5.1.6
https://doi.org/10.30574/wjaets.2026.18.1.0005
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder

International Journal of Inventions in Engineering & Science Technology

http://www.ijiest.in

(JIEST) 2026, Vol. No. 12, Issue 1, Jan-Dec e-ISSN: 2454-9584; p-ISSN: 2454-8111

U, & . (2019). Kubernetes: Up and Running, 2nd Edition. O’Reilly Online
Learning. https://www.oreilly.com/library/view/kubernetes-up-and/9781492046523/

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal
of Internet Services and Applications, 1(1), 7-18. https://doi.org/10.1007/s13174-010-0007-6

33

INTERNATIONAL JOURNAL OF INVENTIONS IN ENGINEERING AND SCIENCE TECHNOLOGY

http://www.ijiest.in/
https://www.oreilly.com/library/view/kubernetes-up-and/9781492046523/
https://doi.org/10.1007/s13174-010-0007-6

